Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.236
Filter
1.
Prion ; 18(1): 40-53, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38627365

ABSTRACT

Prion disease is an infectious and fatal neurodegenerative disease. Western blotting (WB)-based identification of proteinase K (PK)-resistant prion protein (PrPres) is considered a definitive diagnosis of prion diseases. In this study, we aimed to detect PrPres using formalin-fixed paraffin-embedded (FFPE) specimens from cases of sporadic Creutzfeldt-Jakob disease (sCJD), Gerstmann-Sträussler-Scheinker disease (GSS), glycosylphosphatidylinositol-anchorless prion disease (GPIALP), and V180I CJD. FFPE samples were prepared after formic acid treatment to inactivate infectivity. After deparaffinization, PK digestion was performed, and the protein was extracted. In sCJD, a pronounced PrPres signal was observed, with antibodies specific for type 1 and type 2 PrPres exhibited a strong or weak signals depending on the case. Histological examination of serial sections revealed that the histological changes were compatible with the biochemical characteristics. In GSS and GPIALP, prion protein core-specific antibodies presented as PrPres bands at 8-9 kDa and smear bands, respectively. However, an antibody specific for the C-terminus presented as smears in GSS, with no PrPres detected in GPIALP. It was difficult to detect PrPres in V180I CJD. Collectively, our findings demonstrate the possibility of detecting PrPres in FFPE and classifying the prion disease types. This approach facilitates histopathological and biochemical evaluation in the same sample and is safe owing to the inactivation of infectivity. Therefore, it may be valuable for the diagnosis and research of prion diseases.


Subject(s)
Creutzfeldt-Jakob Syndrome , Gerstmann-Straussler-Scheinker Disease , Neurodegenerative Diseases , Prion Diseases , Prions , Humans , Prion Proteins , PrPSc Proteins/metabolism , Paraffin Embedding , Prion Diseases/diagnosis , Prion Diseases/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Prions/metabolism , Gerstmann-Straussler-Scheinker Disease/metabolism , Endopeptidase K , Antibodies , Formaldehyde
2.
Prion ; 18(1): 68-71, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38651736

ABSTRACT

The history of human prion diseases began with the original description, by Hans Gerhard Creutzfeldt and by Alfons Maria Jakob, of patients with a severe brain disease that included speech abnormalities, confusion, and myoclonus, in a disease that was then named Creutzfeldt Jakob disease (CJD). Later, in Papua New Guinea, a disease characterized by trembling was identified, and given the name "Kuru". Neuropathological examination of the brains from CJD and Kuru patients, and of brains of sheep with scrapie disease revealed significant similarities and suggested a possible common mode of infection that, at the time, was thought to derive from an unknown virus that caused slow infections. John Stanley Griffith hypothesized that the agent causing these diseases was "probably a protein without nucleic acid" and, in 1982, Stanley Prusiner reported the identification of a proteinaceous infectious particle (coining the term prion) that was resistant to inactivation methods that were at the time standard for nucleic acids, and identified PrP as the major protein component of the infectious agent in scrapie and in Creutzfeldt-Jakob disease, classifying this also as a prion disease. Interestingly, the prion concept had been previously expanded to yeast proteins capable of replicating their conformation, seeding their own aggregation and transmitting phenotypic information. The prion concept has been more recently expanded to refer to misfolded proteins that are capable of converting a normal form of a protein into an abnormal form. The quest to understand and treat prion diseases has united a specific research community around the topic, and regular meetings (Prion Meetings) have taken place over the years to enable discussions, train junior researchers, and inspire research in the field.


Subject(s)
Prion Diseases , Prions , Humans , Prion Diseases/pathology , Prion Diseases/metabolism , Animals , Prions/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Creutzfeldt-Jakob Syndrome/metabolism , Kuru/pathology
3.
PLoS Pathog ; 20(4): e1012087, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557815

ABSTRACT

Prion diseases uniquely manifest in three distinct forms: inherited, sporadic, and infectious. Wild-type prions are responsible for the sporadic and infectious versions, while mutant prions cause inherited variants like fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). Although some drugs can prolong prion incubation times up to four-fold in rodent models of infectious prion diseases, no effective treatments for FFI and fCJD have been found. In this study, we evaluated the efficacy of various anti-prion drugs on newly-developed knock-in mouse models for FFI and fCJD. These models express bank vole prion protein (PrP) with the pathogenic D178N and E200K mutations. We applied various drug regimens known to be highly effective against wild-type prions in vivo as well as a brain-penetrant compound that inhibits mutant PrPSc propagation in vitro. None of the regimens tested (Anle138b, IND24, Anle138b + IND24, cellulose ether, and PSCMA) significantly extended disease-free survival or prevented mutant PrPSc accumulation in either knock-in mouse model, despite their ability to induce strain adaptation of mutant prions. Our results show that anti-prion drugs originally developed to treat infectious prion diseases do not necessarily work for inherited prion diseases, and that the recombinant sPMCA is not a reliable platform for identifying compounds that target mutant prions. This work underscores the need to develop therapies and validate screening assays specifically for mutant prions, as well as anti-prion strategies that are not strain-dependent.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Animals , Mice , Prions/metabolism , Prion Diseases/drug therapy , Prion Diseases/genetics , Prion Diseases/metabolism , Creutzfeldt-Jakob Syndrome/drug therapy , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism , Brain/pathology , Arvicolinae/metabolism
4.
Nat Commun ; 15(1): 2112, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459071

ABSTRACT

Prion diseases are a group of rapidly progressing neurodegenerative disorders caused by the misfolding of the endogenous prion protein (PrPC) into a pathogenic form (PrPSc). This process, despite being the central event underlying these disorders, remains largely unknown at a molecular level, precluding the prediction of new potential outbreaks or interspecies transmission incidents. In this work, we present a method to generate bona fide recombinant prions de novo, allowing a comprehensive analysis of protein misfolding across a wide range of prion proteins from mammalian species. We study more than 380 different prion proteins from mammals and classify them according to their spontaneous misfolding propensity and their conformational variability. This study aims to address fundamental questions in the prion research field such as defining infectivity determinants, interspecies transmission barriers or the structural influence of specific amino acids and provide invaluable information for future diagnosis and therapy applications.


Subject(s)
Prion Diseases , Prions , Animals , Prions/metabolism , Prion Proteins/genetics , Prion Diseases/genetics , Prion Diseases/metabolism , Mammals/metabolism , Protein Folding
5.
BMC Neurol ; 24(1): 92, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468258

ABSTRACT

BACKGROUND: Human prion diseases (HPDs) are fatal neurodegenerative disorders characterized by abnormal prion proteins (PrPSc). However, the detection of prion seeding activity in patients with high sensitivity remains challenging. Even though real-time quaking-induced conversion (RT-QuIC) assay is suitable for detecting prion seeding activity in a variety of specimens, it shows lower accuracy when whole blood, blood plasma, and blood-contaminated tissue samples are used. In this study, we developed a novel technology for the in vitro amplification of abnormal prion proteins in HPD to the end of enabling their detection with high sensitivity known as the enhanced quaking-induced conversion (eQuIC) assay. METHODS: Three antibodies were used to develop the novel eQUIC method. Thereafter, SD50 seed activity was analyzed using brain tissue samples from patients with prion disease using the conventional RT-QUIC assay and the novel eQUIC assay. In addition, blood samples from six patients with solitary prion disease were analyzed using the novel eQuIC assay. RESULTS: The eQuIC assay, involving the use of three types of human monoclonal antibodies, showed approximately 1000-fold higher sensitivity than the original RT-QuIC assay. However, when this assay was used to analyze blood samples from six patients with sporadic human prion disease, no prion activity was detected. CONCLUSION: The detection of prion seeding activity in blood samples from patients with sporadic prion disease remains challenging. Thus, the development of alternative methods other than RT-QuIC and eQuIC will be necessary for future research.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , Prions/metabolism , Prion Proteins , Prion Diseases/diagnosis , Prion Diseases/metabolism , Brain/metabolism , Plasma/metabolism , Creutzfeldt-Jakob Syndrome/diagnosis
6.
Top Companion Anim Med ; 59: 100859, 2024.
Article in English | MEDLINE | ID: mdl-38508487

ABSTRACT

Prion diseases are fatal neurodegenerative diseases affecting humans and animals. A relationship between variations in the prion gene of some species and susceptibility to prion diseases has been detected. However, variations in the prion protein of cats that have close contact with humans and their effect on prion protein are not well-known. Therefore, this study aimed to investigate the variations of prion protein-encoding gene (PRNP gene) in stray cats and to evaluate variants detected in terms of genetic factors associated with susceptibility or resistance to feline spongiform encephalopathy using bioinformatics tools. For this, cat DNA samples were amplified by a PCR targeting PRNP gene and then sequenced to reveal the variations. Finally, the effects of variants on prion protein were predicted by bioinformatics tools. According to the obtained results, a novel 108 bp deletion and nine SNPs were detected. Among SNPs, five (c314A>G, c.454T>A, c.579G>C, c.642G>C and c.672G>C) were detected for the first time in this study. Bioinformatics findings showed that c.579G>C (Q193H), c.454T>A (Y152N) and c.457G>A (E153K) variants have deleterious effects on prion protein and c.579G>C (Q193H) has high amyloid propensities. This study demonstrates prion protein variants of stray cats and their deleterious effects on prion protein for the first time.


Subject(s)
Brain Diseases , Cat Diseases , Prion Diseases , Prions , Humans , Cats , Animals , Prion Proteins/genetics , Polymorphism, Single Nucleotide , Prion Diseases/genetics , Prion Diseases/veterinary , Prions/genetics , Brain Diseases/veterinary
7.
Nervenarzt ; 95(4): 376-384, 2024 Apr.
Article in German | MEDLINE | ID: mdl-38503894

ABSTRACT

Human spongiform encephalopathies are rare transmissible neurodegenerative diseases of the brain and the nervous system that are caused by misfolding of the physiological prion protein into a pathological form and its deposition in the central nervous system (CNS). Prion diseases include Creutzfeldt-Jakob disease (CJD, sporadic or familial), Gerstmann-Straussler-Scheinker syndrome (GSS) and fatal familial insomnia (FFI). Prion diseases can be differentiated into three etiological categories: spontaneous (sporadic CJD), inherited (familial CJD, FFI, and GSS) and acquired (variant CJD and iatrogenic CJD). Most cases occur sporadically. Prion diseases can lead to a variety of neurological symptoms and always have an inevitably fatal course. Cerebrospinal fluid analysis and magnetic resonance imaging (MRI) play a crucial role in the diagnostics of prion diseases and may facilitate an early and reliable clinical diagnosis. A causal treatment or specific therapeutic agents are not yet available. In general, a palliative therapeutic concept is indicated.


Subject(s)
Creutzfeldt-Jakob Syndrome , Encephalopathy, Bovine Spongiform , Gerstmann-Straussler-Scheinker Disease , Prion Diseases , Animals , Cattle , Humans , Prion Diseases/diagnosis , Prion Diseases/pathology , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/pathology , Gerstmann-Straussler-Scheinker Disease/diagnosis , Gerstmann-Straussler-Scheinker Disease/genetics , Gerstmann-Straussler-Scheinker Disease/pathology , Brain/pathology , Encephalopathy, Bovine Spongiform/pathology
8.
ACS Chem Neurosci ; 15(7): 1533-1547, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507813

ABSTRACT

Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Prion Diseases , Prions , Proteostasis Deficiencies , Humans , Mice , Animals , Neurodegenerative Diseases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Alzheimer Disease/metabolism , Neuroinflammatory Diseases , Down-Regulation , Parkinson Disease/metabolism , Neurons/metabolism , Prion Diseases/drug therapy , Prion Diseases/metabolism , Prions/metabolism , Inflammation/metabolism , Proteostasis Deficiencies/drug therapy , Proteostasis Deficiencies/metabolism
9.
Magn Reson Imaging Clin N Am ; 32(2): 347-361, 2024 May.
Article in English | MEDLINE | ID: mdl-38555145

ABSTRACT

Atypical infections of the brain and spine caused by parasites occur in immunocompetent and immunosuppressed hosts, related to exposure and more prevalently in endemic regions. In the United States, the most common parasitic infections that lead to central nervous system manifestations include cysticercosis, echinococcosis, and toxoplasmosis, with toxoplasmosis being the most common opportunistic infection affecting patients with advanced HIV/AIDS. Another rare but devastating transmittable disease is prion disease, which causes rapidly progressive spongiform encephalopathies. Familiarity and understanding of various infectious agents are a crucial aspect of diagnostic neuroradiology, and recognition of unique features can aid timely diagnosis and treatment.


Subject(s)
Communicable Diseases , Encephalopathy, Bovine Spongiform , Parasites , Prion Diseases , Toxoplasmosis , Animals , Cattle , Humans , Encephalopathy, Bovine Spongiform/diagnosis , Magnetic Resonance Imaging/methods , Prion Diseases/diagnosis , Brain/diagnostic imaging
10.
Science ; 383(6689): 1284-1289, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38513035

ABSTRACT

Can the course of fatal prion diseases be changed by removing the protein before it goes bad?


Subject(s)
Prion Diseases , Prions , Humans , Prion Diseases/genetics , Prion Diseases/prevention & control , Prions/antagonists & inhibitors , Prions/genetics , Mutation , Zinc Fingers
12.
Sci Rep ; 14(1): 6294, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491063

ABSTRACT

Real-time quaking-induced conversion assay (RT-QuIC) exploits templating activity of pathogenic prion protein for ultrasensitive detection of prions. We have utilized second generation RT-QuIC assay to analyze matching post-mortem cerebrospinal fluid and skin samples of 38 prion disease patients and of 30 deceased neurological controls. The analysis of cerebrospinal fluid samples led to 100% sensitivity and 100% specificity, but some samples had to be diluted before the analysis to alleviate the effect of present RT-QuIC inhibitors. The analysis of the corresponding skin samples provided 89.5% sensitivity and 100% specificity. The median seeding dose present in the skin was one order of magnitude higher than in the cerebrospinal fluid, despite the overall fluorescent signal of the skin samples was comparatively lower. Our data support the use of post-mortem cerebrospinal fluid for confirmation of prion disease diagnosis and encourage further studies of the potential of skin biopsy samples for intra-vitam prion diseases´ diagnostics.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , Prions/metabolism , Prion Diseases/diagnosis , Skin/metabolism , Prion Proteins , Biological Assay , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid
13.
ACS Chem Neurosci ; 15(5): 898-908, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38407017

ABSTRACT

Protein misfolding has been extensively studied in the context of neurodegenerative disorders and systemic amyloidoses. Due to misfolding and aggregation of proteins being highly heterogeneous and generating a variety of structures, a growing body of evidence illustrates numerous ways how the aggregates contribute to progression of diseases such as Alzheimer's disease, Parkinson's disease, and prion disorders. Different misfolded species of the same protein, commonly referred to as strains, appear to play a significant role in shaping the disease clinical phenotype and clinical progression. The distinct toxicity profiles of various misfolded proteins underscore their importance. Current diagnostics struggle to differentiate among these strains early in the disease course. This review explores the potential of spectral fluorescence approaches to illuminate the complexities of protein misfolding pathology and discusses the applications of advanced spectral methods in the detection and characterization of protein misfolding disorders. By examining spectrally variable probes, current data analysis approaches, and important considerations for the use of these techniques, this review aims to provide an overview of the progress made in this field and highlights directions for future research.


Subject(s)
Amyloidosis , Neurodegenerative Diseases , Prion Diseases , Proteostasis Deficiencies , Humans , Fluorescence , Proteostasis Deficiencies/metabolism , Amyloidosis/metabolism , Prion Diseases/metabolism , Neurodegenerative Diseases/metabolism , Protein Folding
14.
Mol Imaging Biol ; 26(2): 195-212, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38302686

ABSTRACT

Prion diseases are rare, rapidly progressive, and fatal incurable degenerative brain disorders caused by the misfolding of a normal protein called PrPC into an abnormal protein called PrPSc. Their highly variable clinical presentation mimics various degenerative and non-degenerative brain disorders, making diagnosis a significant challenge for neurologists. Currently, definitive diagnosis relies on post-mortem examination of nervous tissue to detect the pathogenic prion protein. The current diagnostic criteria are limited. While structural magnetic resonance imaging (MRI) remains the gold standard imaging modality for Creutzfeldt-Jakob disease (CJD) diagnosis, positron emission tomography (PET) using 18fluorine-fluorodeoxyglucose (18F-FDG) and other radiotracers have demonstrated promising potential in the diagnostic assessment of prion disease. In this context, a comprehensive and updated review exclusively focused on PET imaging in prion diseases is still lacking. We review the current value of PET imaging with 18F-FDG and non-FDG tracers in the diagnostic management of prion diseases. From the collected data, 18F-FDG PET mainly reveals cortical and subcortical hypometabolic areas in prion disease, although fails to identify typical pattern or laterality abnormalities to differentiate between genetic and sporadic prion diseases. Although the rarity of prion diseases limits the establishment of a definitive hypometabolism pattern, this review reveals some more prevalent 18F-FDG patterns associated with each disease subtype. Interestingly, in both sporadic and genetic prion diseases, the hippocampus does not show significant glucose metabolism alterations, appearing as a useful sign in the differential diagnosis with other neurodegenerative disease. In genetic prion disease forms, PET abnormality precedes clinical manifestation. Discordant diagnostic value for amyloid tracers among different prion disease subtypes was observed, needing further investigation. PET has emerged as a potential valuable tool in the diagnostic armamentarium for CJD. Its ability to visualize functional and metabolic brain changes provides complementary information to structural MRI, aiding in the early detection and confirmation of CJD.


Subject(s)
Creutzfeldt-Jakob Syndrome , Neurodegenerative Diseases , Prion Diseases , Humans , Fluorodeoxyglucose F18/metabolism , Radiopharmaceuticals/metabolism , Positron-Emission Tomography/methods , Prion Diseases/metabolism , Prion Diseases/pathology , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Brain/metabolism
15.
Nat Rev Dis Primers ; 10(1): 14, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424082

ABSTRACT

Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Animals , Cattle , Humans , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/pathology , Prion Proteins/metabolism , Prion Diseases/diagnosis , Prion Diseases/genetics , Prion Diseases/metabolism , Brain/pathology
17.
BMJ Case Rep ; 17(2)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388201

ABSTRACT

Variably protease-sensitive prionopathy (VPSPr) is a recently characterised rare subtype of sporadic prion disease, mainly affecting individuals with valine homozygosity at codon 129 in the prion protein gene, with only seven methionine homozygote cases reported to date. This case presents clinical, neuropathological and biochemical features of the eighth VPSPr case worldwide with methionine homozygosity at codon 129 and compares the features with the formerly presented cases.The patient, a woman in her 70s, presented with cognitive decline, impaired balance and frequent falls. Medical history and clinical presentation were suggestive of a rapidly progressive dementia disorder. MRI showed bilateral thalamic hyperintensity. Cerebrospinal fluid real-time quaking-induced conversion was negative, and the electroencephalogram was unremarkable. The diagnosis was established through post-mortem pathological examinations. VPSPr should be suspected in rapidly progressive dementia lacking typical features or paraclinical results of protein misfolding diseases.


Subject(s)
Creutzfeldt-Jakob Syndrome , Dementia , Prion Diseases , Prions , Female , Humans , Prions/genetics , Prions/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism , Methionine/genetics , Methionine/metabolism , Homozygote , Brain/pathology , Prion Diseases/genetics , Prion Diseases/metabolism , Prion Diseases/pathology , Dementia/genetics , Racemethionine/metabolism , Codon/genetics , Codon/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Creutzfeldt-Jakob Syndrome/pathology
18.
PLoS One ; 19(2): e0298095, 2024.
Article in English | MEDLINE | ID: mdl-38394123

ABSTRACT

The PINK1/Parkin pathway of mitophagy has been implicated in the pathogenesis of Parkinson's disease. In prion diseases, a transmissible neurodegenerative disease caused by the misfolded and infectious prion protein (PrPSc), expression of both PINK1 and Parkin are elevated, suggesting that PINK1/Parkin mediated mitophagy may also play a role in prion pathogenesis. Using mice in which expression of either PINK1 (PINK1KO) or Parkin (ParkinKO) has been ablated, we analyzed the potential role of PINK1 and Parkin in prion pathogenesis. Prion infected PINK1KO and ParkinKO mice succumbed to disease more rapidly (153 and 150 days, respectively) than wild-type control C57Bl/6 mice (161 days). Faster incubation times in PINK1KO and ParkinKO mice did not correlate with altered prion pathology in the brain, altered expression of proteins associated with mitochondrial dynamics, or prion-related changes in mitochondrial respiration. However, the expression level of mitochondrial respiration Complex I, a major site for the formation of reactive oxygen species (ROS), was higher in prion infected PINK1KO and ParkinKO mice when compared to prion infected control mice. Our results demonstrate a protective role for PINK1/Parkin mitophagy during prion disease, likely by helping to minimize ROS formation via Complex I, leading to slower prion disease progression.


Subject(s)
Neurodegenerative Diseases , Prion Diseases , Prions , Mice , Animals , Mitophagy , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Prion Diseases/genetics
19.
J Phys Chem Lett ; 15(8): 2117-2122, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38363235

ABSTRACT

The misfolding of the α-helical cellular prion protein into a self-propagating ß-rich aggregated form is a key pathogenic event in fatal and transmissible neurodegenerative diseases collectively known as prion diseases. Herein, we utilize the interfacial properties of liquid crystals (LCs) to monitor the lipid-membrane-induced conformational switching of prion protein (PrP) into ß-rich amyloid fibrils. The lipid-induced conformational switching resulting in aggregation occurs at the nanomolar protein concentration and is primarily mediated by electrostatic interactions between PrP and lipid headgroups. Our LC-based methodology offers a potent and sensitive tool to detect and delineate molecular mechanisms of PrP misfolding mediated by lipid-protein interactions at the aqueous interface under physiological conditions.


Subject(s)
Liquid Crystals , Prion Diseases , Prions , Humans , Prion Proteins/chemistry , Prions/chemistry , Prions/metabolism , Prion Diseases/metabolism , Prion Diseases/pathology , Amyloid beta-Peptides , Amyloid/chemistry , Lipids , Protein Folding
20.
BMC Genomics ; 25(1): 177, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355406

ABSTRACT

BACKGROUND: Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS: All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION: Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.


Subject(s)
Prion Diseases , Prions , Scrapie , Animals , Horses/genetics , Sheep/genetics , Dogs , Prions/genetics , Prions/metabolism , Prion Proteins/genetics , Polymorphism, Single Nucleotide , Livestock/genetics , Open Reading Frames , Phylogeny , Camelus/genetics , Prion Diseases/genetics , Prion Diseases/veterinary , Goats/genetics , Goats/metabolism , Scrapie/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...